Transcriptional and Epigenetic Regulation of Epithelial- Mesenchymal Transition
نویسنده
چکیده
Tan, E.-J. 2013. Transcriptional and Epigenetic Regulation of Epithelial-Mesenchymal Transition. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 928. 51 pp. Uppsala. ISBN 978-91-554-8734-8. The transforming growth factor beta (TGFβ) is a cytokine that regulates a plethora of cellular processes such as cell proliferation, differentiation, migration and apoptosis. TGFβ signals via serine/threonine kinase receptors and activates the Smads to regulate gene expression. Enigmatically, TGFβ has a dichotomous role as a tumor suppressor and a tumor promoter in cancer. At early stages of tumorigenesis, TGFβ acts as a tumor suppressor by exerting growth inhibitory effects and inducing apoptosis. However, at advanced stages, TGFβ contributes to tumor malignancy by promoting invasion and metastasis. The pro-tumorigenic TGFβ potently triggers an embryonic program known as epithelialmesenchymal transition (EMT). EMT is a dynamic process whereby polarized epithelial cells adapt a mesenchymal morphology, thereby facilitating migration and invasion. Downregulation of cell-cell adhesion molecules, such as E-cadherin and ZO-1, is an eminent feature of EMT. TGFβ induces EMT by upregulating a non-histone chromatin factor, high mobility group A2 (HMGA2). This thesis focuses on elucidating the molecular mechanisms by which HMGA2 elicits EMT. We found that HMGA2 regulates a network of EMT transcription factors (EMT-TFs), such as members of the Snail, ZEB and Twist families, during TGFβ-induced EMT. HMGA2 can interact with Smad complexes to synergistically induce Snail expression. HMGA2 also directly binds and activates the Twist promoter. We used mouse mammary epithelial cells overexpressing HMGA2, which are mesenchymal in morphology and highly invasive, as a constitutive EMT model. Snail and Twist have complementary roles in HMGA2-mesenchymal cells during EMT, and tight junctions were restored upon silencing of both Snail and Twist in these cells. Finally, we also demonstrate that HMGA2 can epigenetically silence the E-cadherin gene. In summary, HMGA2 modulates multiple reprogramming events to promote EMT and invasion.
منابع مشابه
Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes
Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation...
متن کاملEpigenetic reprogramming in the epithelial-to-mesenchymal transition
The epithelial-to-mesenchymal transition (EMT) is a cellular dedifferentiation process that is critical to development, wound healing and metastasis. Like other cell state transitions, such as differentiation, EMT is accompanied by genome-wide epigenetic reprogramming. However, the relationship between reprogramming and functional changes in the cell is poorly understood. In an A549 non-small c...
متن کاملPost-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions
Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks regulate EMT; these networks include the long non-coding RNA...
متن کاملEmerging Transcriptional Mechanisms in the Regulation of Epithelial to Mesenchymal Transition and Cellular Plasticity in the Kidney
Notwithstanding controversies over the role of epithelial to mesenchymal transition in the pathogenesis of renal disease, the last decade has witnessed a revolution in our understanding of the regulation of renal cell plasticity. Significant parallels undoubtedly exist between ontogenic processes and the initiation and propagation of damage in the diseased kidney as evidenced by the reactivatio...
متن کاملOvarian cancer plasticity and epigenomics in the acquisition of a stem-like phenotype
Aggressive epithelial ovarian cancer (EOC) is genetically and epigenetically distinct from normal ovarian surface epithelial cells (OSE) and early neoplasia. Co-expression of epithelial and mesenchymal markers in EOC suggests an involvement of epithelial-mesenchymal transition (EMT) in cancer initiation and progression. This phenomenon is often associated with acquisition of a stem cell-like ph...
متن کاملSET8 promotes epithelial-mesenchymal transition and confers TWIST dual transcriptional activities.
SET8 is implicated in transcriptional regulation, heterochromatin formation, genomic stability, cell-cycle progression, and development. As such, it is predicted that SET8 might be involved in the development and progression of tumour. However, whether and how SET8 might be implicated in tumourigenesis is currently unknown. Here, we report that SET8 is physically associated with TWIST, a master...
متن کامل